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APPLICATION OF MODERN NETWORK THEORY TO 

ANALYSIS OF COMPLEX SYSTEMS 

by John C. Fakan 

Lewis Research Center 

SUMMARY 

The large and complex systems made possible by present day technology require a 
straightforward and rigorous mathematical methodology for determining their perfor- 
mance. Existing techniques rely to a large degree on intuition to handle the multidis- 
ciplinary nature of such systems. 
plied to these systems in a consistent and reliable manner, thus allowing for the com- 
plete analysis of systems in te rms  of the variables associated with the system compo- 
nents. 

studied by use of these techniques, and further show that any system should respond to 
the methodology in a straightforward manner. 

The techniques of Modern Network Theory can be ap- 

The examples presented indicate the ease with which fairly complex systems can be 

INTRODUCTION 

Present day technology has brought with it both the desire and the ability to conceive 
and construct large and extremely complex systems. Inherent in the concept of any sys-  
tem is the need for  techniques to analyze the operation of the system in t e rms  of the 
variables associated with the system components. In the past ,  it has been possible to 
analyze most systems with monodisciplinary techniques backed up with a bit of intuition. 
Unfortunately, this approach is becoming impractical, mainly because of the extreme 
size and complexity of new systems which rapidly exceed the intuitive grasp of the sys- 
tems analyst. Thus, there  exists a need for techniques which can completely encompass 
an entire complex system while at the same time allowing rigorous mathematical anal- 
ysis. 

uation of the various analytical techniques available to the engineer. In the electrical 
With the widespread availability of high-speed digital computers has come a reeval- 



engineering community there exists a body of theory known as Modern Network Theory 
(hereinafter referred to as MNT) which, when considered in the light of digital computer 
technology, shows up as a most capable and powerful analytical tool (refs. 1 to 4). The 
growth of MNT to its present status follows quite closely the growth of digital computer 
technology and has been formulated to take advantage of this technology. The principal 
advantages provided by MNT a r e  as follows: 

(1) MNT is a clear and simple methodology for the generation of the system equa- 
tions of an interconnected finite se t  of components. 

(2) MNT has straightforward techniques for  obtaining a suitable equation format con- 
sistent with the requirements for  digital computer solutions. 

(3) MNT contains rather extensive techniques for synthesis of systems having desired 
characteristics. 

Although MNT has been exclusively a tool of the electrical engineering community, 
it is now clear to the author and to others ( e .g . ,  re f .  5) that there is no unique feature 
of electrical engineering that would limit the use of the MNT techniques to that field. In 
fact ,  it is now the contention of the author that, in principle, the MNT systems analysis 
methods can be applied to any system. The implications of this a r e  quite profound, and 
although there a r e  problems standing in the way of a complete working methodology for 
systems in general, none of these problems appears insurmountable. Indeed, some of 
the more formidable ones have already yielded to the efforts of this investigation. 

MODERN NETWORK THEORY 

A discussion of Modern Network Theory must really be preceded by a description of 
Graph Theory, which forms the basis for the establishment of the system equations as- 
sociated with a given network. 

Graph Theory 

Graph Theory, as the name implies, is concerned with the properties of linear 
oriented graphs. Linear refers  to the fact that such graphs a r e  made up of lines, and 
oriented re fers  to a "sense of direction" associated with the lines. 

A few definitions of some of the labels used in Graph Theory (essentially as found in 
re f .  4) now follow as an aid to the understanding of the examples which a r e  to be pre- 
sented in the section APPLIED NETWORK ANALYSIS. 

Definition 1: Element - An element is a line segment and i ts  vertices, always one vertex 
on each end of the line segment. 
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Definition 2: Vertex - A vertex is a dot. A vertex is the only significant physical joining 
or ending of line segments (elements) in a graph. 

Vertices are illustrated either as small  circles o r  solid dots. 
segments at X in figure 1 is not a vertex. 

The intersection of line 

Figure 1.  - Example of graph showing vertices. 

Definition 3: Graph - A graph is a finite se t  of elements and associated vertices. 

The letters e and v are used to  denote the number of elements and vertices that are 
contained in a graph. The notation G(e, v) is used to mean that the graph G contains 
e elements and v vertices. 

The following definitions refer to elements and vertices in general. 

Definition 4: Incidence - An element is incident to a vertex and a vertex is incident to an 
element if the vertex is a vertex of the element. 

In figure 2,  elements 1, 2 ,  and 3 are incident to vertex A, and vertex A is incident to 
elements 1 ,  2, and 3.  

Definition 5: Degree of vertex - The degree of a vertex is the number of elements incident 
to the vertex. 

3 
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Vertices A 
degree. 

Definition 6 : 

Definition 7 : 

Figure 2.  - Example of graph 
showing incidence. 

and D of figure 2 are of degree 3.  Vertices B and C are of second 

Adjacent elements - Two elements a r e  adjacent if the elements a r e  incident 
to the same vertex. 

Adjacent vertices - Two vertices a r e  adjacent if the vertices a r e  incident 
to the same element. 

Elements 2 and 3 in figure 2 a re  adjacent. In the same graph, vertices A and C a r e  
adjacent, but vertices B and C a r e  not. In figure 3 each vertex is adjacent to every 
other vertex in the graph. A graph of this type is given the special name "complete 
graph. I t  

. -  

Figure 3. - Complete graph. 
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Definition 8: End vertex - An end vertex is a vertex of degree 1. 

Vertices A, C ,  and E of figure 4 are end vertices. 

Figure 4. - Example of graph showing end and 
interior vertices and elements. 

Definition 9: End element - An end element is an element incident to at  least one end 
vertex. 

Elements 1, 2, and 5 of figure 4 a r e  end elements. 

Definition 10: Interior vertex - A vertex of degree greater than 1 is an interior vertex. 

Vertices B and D of figure 4 a r e  interior vertices. 

Definition 11: Interior element - If both vertices of an element a r e  of degree greater 
than 1, the element is an interior element. 

Elements 3 and 4 of figure 4 are interior elements. 

totality of a graph. 
In most instances the important characteristics relate to something less than the 

Thus, the following definitions a r e  appropriate: 

Definition 12: Subgraph - A subgraph G, of a graph G is a subset of the elements of G. 

By definition 3,  a subgraph is also a graph in its own right. 
as well as necessary,  to consider a subset of the elements of a subgraph (i. e .  , a sub- 
graph of a subgraph). 

On occasion it is convenient, 

5 
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Definition 13: Proper  subgraph - A proper subgraph of a graph G(e,v) is a subgraph of 
G containing at least one but fewer than e elements. 

Definition 14: Complement - With respect to a graph G, the complement GA of a sub- 
graph Gs of G is the se t  of elements of G not contained in Gs; Gs and 
GL a r e  complementary subgraphs with respect to G. 

The various subgraphs of a graph may o r  may not share  vertices o r  elements with 
one another. The following definitions then apply: 

Definition 15: Disjoint (Vertex disjoint) - Two subgraphs a r e  disjoint (vertex disjoint) if 
the subgraphs have no vertices in common. 

Definition 16: Joint (Vertex joint) - Two subgraphs a r e  vertex joint if the subgraphs 
share at  least one common vertex. 

Definition 17: Element disjoint - Two subgraphs a r e  element disjoint if the subgraphs 
have no elements in common. 

Complementary subgraphs Gs and G; a r e  always element disjoint. 

Definition 18: Element joint - Two subgraphs a re  element joint if  the subgraphs share  at 
least one common element. 

To provide a sense of orientation to a graph the following definition is appropriate: 

Definition 19: Directed, o r  oriented, graph - A directed, o r  oriented, graph is a graph 
in which every element is arbitrari ly marked with some symbol that de- 
notes direction. 

It is very significant that the method of choosing the direction of the symbol for  each ele- 
ment can be entirely arbi t rary and should not depend on such ideas as the direction in 
which something appears to flow, o r  on any other s imilar  idea. This idea often proves 
to be most difficult to grasp,  and is important because apparent flow directions and sim- 
ilar orientation ideas can be quite misleading. 

graph with an arrowhead. The graph of figure 5(a) is an example of a directed version of 
the graph of figure 2. 

A commonly used technique in graph theory is to mark each element of a directed 

6 

1 



@ + k 3  

5 - 2 C D 2N C D c 

(a) Graph. (b) Tree of graph. (c) Cotree of graph. 

Figure 5. - Directed version of graph shown in figure 2. 

Particular subgraphs of graphs are sufficiently important to the study of graph theory 
to be given names. One such subgraph is called a "tree" and is described as follows: 

Definition 20: 

A definition of 

Tree  - A t r ee  is any subgraph of a graph G(e, v) which has the following 
properties : 
(1) Contains all vertices of G 
(2) Contains (v - 1) elements of G 
(3) Is connected 
(4) Contains no circuits 

"connected" has not been given, but for  the purpose of this discussion it 
should be sufficient to say that a connected graph (or subgraph) is one in which there 
exists between every pair  of vertices at least one route, over one o r  more elements of 
the graph, by which to travel from one vertex of a pair to  the other. If no element along 
this "route" is traversed more than once, the route is given the special name "path. I *  

A circuit is defined as follows: 

Definition 21: Circuit - A circuit is a connected subgraph in which all vertices of the 
subgraph are of second degree. 

It is interesting to note that any three of the four properties in the definition of a tree are 
sufficient to imply the remaining condition. In fact, the second and fourth conditions are 
alone sufficient to imply the other two. The subgraph of figure 5(b) is one of the trees of 
the graph in 5(a). 

Another type of subgraph, the cotree, follows directly f rom the tree subgraph. 

Definition 22: Cotree - A cotree is a subgraph which is the complement of a tree. 
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Figure 5(c) depicts the cotree complement of the t ree  in figure 5(b). 
t ree  and cotree are also given names as an aid to discussion. Single elements of a t ree  
a r e  called "branches, l 1  and single elements of a cotree a re  called "chords. 

sion. If the vertices of a graph a r e  segregated into n mutually exclusive and all inclu- 
sive se t s ,  all those elements of the graph that have one vertex in one set  and the other 
vertex in a different set  form an n-seg. Fo r  brevity, a 2-seg is simply called a seg. 

An example of a seg  of the graph of figure 5 is shown in figure 6 .  This seg is the 
result of segregating vertices A, C,  and D in one set  and vertex B into another. Ele- 
ments 2 ,  3, and 5 of the graph do not appear in this seg  since both vertices of each of 
these elements a r e  in the same se t .  Note that vertex C does not appear in the seg 
since no elements in this seg  are incident to it. 

The elements of the 

Another useful subgraph is the "seg, l 1  which is best defined by the following discus- 

Figure 6. - Seg of graph 
shown in figure 5. 

Matrix Notation 

The listing of the various subgraphs of a particular graph is easily accomplished 
through the use of a matrix notation technique. The number of columns in the matrix for 
a given graph wil l  be equal to the number of elements contained in the graph. In fact, 
each column is labeled with one element of the graph. The rows of the graph then a re  
vector representations of the subgraphs. The appearance of an element in a subgraph is 
indicated by a 1'1 '1 entry in the row representing that subgraph and under the column 
representing that element. Elements not present in a given subgraph a r e  entered as 0 
(zero) in the proper row and column position. 

If the graph is directed, the 1 entries a re  modified by the inclusion of either a plus 
sign o r  a minus sign to indicate the alinement of the element with respect to a sense of 
direction assigned to the subgraph. The types of subgraphs which concern us here a re  
segs and circuits. Fo r  segs,  the positive sense of direction of the subgraph is that fol- 
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lowed in going from one set  of vertices which define the seg, to the other., Which direction 
is taken to be positive is not really important. In circuits, the positive sense is assigned 
to one o r  the other of the two possible modes of circumnavigating the circuit. Again the 
direction taken to be positive is not important. In the case of "fundamental" seg and cir-  
cuit subgraphs, the direction of the subgraph is usually based on that of the element used 
to form the particular subgraph. 

6 

(a) Graph. 

1 - @ c B P 

(c) Complementary 
cotree. 

(b) One t ree  of graph. 

T-J D 

(d) Fundamental 
circuit based on 
chord number 1. 

1 2 3 4 5 6  

0 1 1 0 1 0  

Circuit based on 1 1 0  1 0 - 1  0 
Circuit based on 4 0 - 1  1 1 - 1  0 
Circuit based on 6 0 - 1  1 0  0 1 

C O E  {l 0 0 1 0 1} 

(e) Matrix representation. 

Figure 7. - A graph, one of its t rees ,  the complemen- 
tary cotree, a circuit, and a matrix representation 
of these and two other subgraphs. 

9 



A fundamental seg  is formed by considering a tree and then noting the natural segre- 
gation of vertices that occurs when any one branch is removed. The seg  that results 
from that particular vertex segregation will, of course,  contain the one branch upon which 
it was  based (but no other branches of that t ree) ,  and the sign given to the seg is such that 
the branch would be positive. 

sidering one chord and a path within the complementary t ree  which connects to both ver- 
tices of the chord. One such path wil l  always exist and together with the chord will al- 
ways form exactly one circuit. Figure 7 shows such a circuit. The sign of this type of 
circuit is usually assigned so  that the chord direction is positive. Continuing around the 
circuit in the direction assigned by the chord wil l  allow the signs for the other circuit 
elements to be determined. 

Fundamental circuits a r e  based on chords of a cotree and a r e  formed simply by con- 

Figure 7 also shows a directed graph, one of its t rees ,  the complementary cotree, 
and a matrix listing of all of the fundamental circuits based on the cotree. 
rows of the matrix represent the t ree  and the cotree with no orientation associated with 
these two subgraphs. 

The first two 

Variables in Modern Network Theory 

The variables used to quantitatively describe the behavior of systems a r e  as follows: 
Each element has associated with i t  variables in pairs .  
through variable, and one across  variable. Also, each element has associated with it 
exactly one element characteristics equation (ECE). 

of variables associated with that same element. 
an element may involve any or  all of the variables of the graph. 
a r e  usually functions of t ime, and the ECE's commonly involve differential operators. 

Certain restrictions a r e  placed upon the variables of MNT. F i rs t ,  for  practical pur- 
poses, it is required that one, but not necessarily both, of the variables of a pair as- 
sociated with an element must be calculable in te rms  of measurable quantities. 

tant to the theory, per  s e .  It guarantees that the MNT model of the system is testable. 
There a r e  two really fundamental requirements which must be satisfied by the variables 
used in MNT: 

(1) The sum of the through variables for the elements of any n-seg must vanish. 
(2) The sum of the across  variables for  the elements of any circuit must vanish. 

In the field of electrical engineering, these requirements a r e  known as Kirchhoff's laws. 
(In statics these requirements are used, but in a rather unconscious way: in fact, the 

Each pair consists of one 

In simple cases,  the ECE associated with an element is a relation between one pair 
But generally, the ECE associated with 

The variables of MNT 

This requirement really concerns the scientific application of MNT and is not impor- 

10 



second law is never mentioned explicitly because of its obviousness (the across variable 
is position). In hydraulics, both laws a re  explicitly stated. Outside of these fields, the 
applicability of network analysis has not been recognized. This is clear from the fact 
that the very concept of through and across  variables and the l l lawsl l  pertaining to them 
have no explicit formulation.) It should be noted, however, that the conformity of the 
electrical variables (current and voltage) to the f i rs t  and second laws is actually the con- 
sequence of the methods used in defining the numerical scales  on meters  used to measure 
the variables. 

The important point to make here is that any subsystem should respond to s imilar  
treatment if the "meters" that a r e  used to define the variables can also be calibrated 
(or defined) in such a way that the requirements a re  satisfied. 

These requirements can be restated in a form that again makes use of matrix nota- 
tion in the following way. If S represents a matrix of segs generated in the way previ- 
ously described and Y represents a column matrix of the through variables associated 
with the elements of the graph, the following must be true: 

SY = 0 (1) 

where the right side is a column matrix of zeros.  
if B is a matrix of circuits and X is a column matrix of across  variables, 

Likewise, for  the other requirement, 

BX = 0 (2) 

Of course, i t  is necessary that the matrices be arranged s o  that they a r e  conformable 
f o r  multiplication, and the ordering of the variables in the rows of the column matrices 
must be the same as the ordering of the columns in the seg  and circuit matrices in order  
for the two statements to have any significance. From equation (1) it can be concluded 
that the value of all through variables associated with end elements must always be iden- 
tically zero. 

definitions) is that the following is true: 
A direct consequence of the properties of graphs (which a r e  based on the previous 

(3) t SB = O  

where superscript t means the transpose of the matrix which it modifies, and S and B 
are any seg  and circuit matrices that a r e  dimensionally conformable for multiplication. - 

11 



T h eo re m s 

At this point it is appropriate to introduce a few interesting theorems, based on the 
properties of graphs, that have immediate value in the analysis of real-world problems. 

Theorem 1: The maximum number of specified across  variables in a network is numer- 
ically equal to (v - l), and the elements with a specified across  variable must all be 
contained in some t r ee  of the corresponding graph. 

Translated to an electrical engineering situation (where the variables already satisfy the 
requirements), the meaning is that only (v - 1) of the electrical  components may have an 
arbitrari ly specified value of voltage; and further, all such specified voltage components 
must be contained in some corresponding t ree  of the graph which represents the electrical 
network involved. Note that the theorem does not mention voltage but only the general 
idea of the across  variable. It would thus be applicable to any network that was described 
in te rms  of a satisfactory across  variable. 

The following theorem concerns through variables in general: 

Theorem 2: The maximum number of specified through variables in a network is numer- 
ically equal to (e - v + l), and all elements having specified through variables must be 
contained in the cotree of a t ree  that contains all elements that have specified across  
variables if any such elements exist. 

No rigorous proofs a re  given in this work. Nevertheless, it seems appropriate to indicate 
the nature of the proofs and to show plausibility where possible. 

tain no circuits, and s o  (v - 1) across variables can be specified. If another across  vari- 
able is specified, however, the corresponding element must always complete a circuit, 
and the new across  variable is already determined by the second requirement (Kirchhoff's 
law for  across  variables) on the variables of MNT. 

To see  the truth of theorem 2, we need the help of a microtheorem, namely, "No 
cotree contains a seg. '' A proof by contradiction runs as follows: If a cotree contained a 
seg,  it would contain all of the elements which join the two se ts  of vertices that define 
the seg. The complement of the cotree, then, would - not contain any element joining the 
one set with the other. But, the complement of a cotree is a t r ee ,  which does join all 
vertices. 

Therefore, no violation of the first requirement imposed on variables (Kirchhoff's 
law for  through variables) can be encountered if (e - v + 1) through variables on a cotree 
a r e  specified. If another through variable is added to the list of specified through vari- 

Regarding theorem 1 , it is obvious that every graph contains a t ree .  Now t rees  con- 
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ables, a seg will be included in the set of elements, namely, that defined by the removal 
of the element from the t ree .  

Theorems 1 and 2 a r e  important in themselves, of course, but they also serve to 
clearly show the plausibility of the following theorems which a re  central to MNT: 

Theorem 3: There a r e  exactly (e - v + 1) linearly independent circuit vectors. 

Theorem 4: There a r e  exactly (v - 1) linearly independent seg vectors. 

Theorem 3 follows directly from theorem 1 .  For if the maximum number of across  
variables which may be specified is (v - l),  then by using Kirchhoff's laws for across  
variables the information can be "spread'? to the remaining (e - v + 1) elements. Thus, 
there must be at least (e - v + 1) linearly independent circuit equations. On the other 
hand, if there were more7  (v - 1) across  variables could not be arbitrari ly specified. 
Theorem 4 follows from theorem 2 by the same sor t  of argument. 

conformity with the Kirchhoff requirements but do not indicate any systematic plan for 
forming these equations. 
"basis set" and in matrix notation is written % fo r  circuits and s b  for segs.  A fun- 
damental set  of circuits Bf (i. e . ,  one for each and every chord of a cotree) is always a 

Bb. 
tree) is always an Sb. 

Theorems 3 and 4 indicate the number of circuit and seg  equations required to ensure 

A complete set  of circuit o r  seg equations is given the name 

Similarly, a fundamental set  of segs Sf ( i . e . ,  one for each and every branch of a 

APPLIED NETWORK ANALYSIS 

The material in the preceding section has been intended only as cursory background 
material  to aid in the understanding of the various analytical techniques which a r e  to be 
presented. 
ple systems o r  subsystems. 

With theorems 1 and 2 ,  it is possible to consider the analysis of certain types of 
systems problems of which the following is an example. 

These presentations will  take the form of analyses which a r e  applied to Sam- 

Hydra u I ics Problem 

The problem to be considered involves the hypothetical hydraulic network of figure 8. 
The question to be answered is: "Are the numbers and locations of the various pumps 
consistent with the physical laws ? ? ?  

13  



40 gal/min 

A 

C 

11 

I I  12 

3 
20 gal/min 

F 

IO gal/min 

Figure 8. - Hypothetical hydraulic network. 

Note that there are two types of pumps used in the network: One type provides a 
constant flow rate (gear, piston, diaphragm, e t c . ) ,  and the other provides a constant 
pressure r ise  between its inlet and outlet ports (turbine, centrifugal, etc.  ). 

The other devices that are depicted in the network (e. g.  , the scrubber,  orifices, 
and water wheel) are essentially simple resistive loads, with the exception of the pipes 
that interconnect the various devices. For  this example , the pipes a re  considered as 
being "loss free", although pipe losses could also be included in a more rigorous treat-  
ment of the problem. 

To apply the techniques of MNT analysis to this problem, the f i rs t  step is to con- 
struct a graph of the network under study. From the graph it is then possible to study 
the interrelation of the various elements (devices) which a r i s e s  from the particular man- 
ne r  in which they are interconnected. 

to 13, without regard to order .  
to F ,  again without regard to any order  (see fig. 8). 

To simplify the construction of the graph, the devices have been coded with numbers 1 
The connection points have been coded with the letters A 

14 



The graph is then constructed as is shown in figure 9. The vertices (A to  F) and the 
elements (1 to 13) have been arranged so that they approximate their  particular alinement 
in the network. 
solution of the problem. 

This is done in the interest of clarity and is not at all necessary to the 

1 

Figure 9.  - Graph of hydraulic network shown 
in figure 8. 

The theorem relating to the across  variables states: The maximum number of spec- 
ified "across variables" (pressure in this case) is equal to one less than the number of 
vertices (v - l), and the location of these specified elements must correspond to 
"branches" of a common "tree". 

Theorem 2 ,  which will also be used in analyzing this problem, states:  The maximum 
number of specified through variables (in this case flow rate) is equal to (e - v + l), where 
e is the number of elements in the graph and v the number of vertices. It is further 
necessary that all of the elements which have a specified flow rate be chords of the par- 
ticular cotree that complements the t ree  containing all of the specified pressure elements. 

Note that the sum of elements in a tree and in its complementary cotree indeed sum 
to the total number of elements in the graph, that is, 

( v -  1) + ( e  - v + l )  = 
Tree  Cotree Graph 

e 

In the graph of the hydraulics network, there are 13 elements (e = 13) and six ver- 
t ices (v = 6). 
of constant pressure pumps is 

Thus, from the first theorem we find that the maximum allowable number 
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Those elements of the graph which correspond to constant pressure pumps a r e  2, 4, 5, 
9, and 12 (i .e.  , five such elements). Thus, the number of these pumps is consistent. 

The maximum allowable number of constant flow pumps is 

e - v + 1 = 1 3 -  6 + 1 = 8  

And since there are only four such devices (elements 1, 8, 11, and 13), there is no con- 
flict here .  

To analyze the consistency of the location of the pumps in the network, it is well to 
construct a subgraph which corresponds to the constant pressure pumps and then see if a 
t r ee  can be found which includes all of these elements. Figure 10 is a grap.h of the con- 
stant pressure elements. It is immediately clear that these elements a r e  not consistent 
with the first theorem since the subgraph contains a circuit. Because no t ree  can contain 
a circuit, it is not possible to find a t ree  which will contain all of these elements. 

- 

Figure 10. - Subgraph of constant pressure 
elements, hydraulic system example. 

Thus the question is answered: "The number of pumps is consistent with the physi- 
cal laws, but their location in the network is not. " If the hydraulics network is to func- 
tion, some change in the system must be made. A repeat of the previous analysis will 
allow us to evaluate the success of any proposed change. 

Consider, for example, the possibility of switching the inlet of pump (2) f rom below 
to above orifice (lo),  dotted connection in figure 8. The number of pumps remains the 

same so this consistency is maintained. The graph of the constant pressure elements is 
now as shown in figure 11. Note that this subgraph has all of the properties of a t ree  just 
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\4 5 

Figure 11. - Graph of reconnected constant 
pressure  elements, hydraulic system 
example. 

as it stands and is therefore a tree. Thus, the location of the constant pressure pumps 
is now consistent. 

Since the t ree  of figure 11 does not contain any elements corresponding to constant 
flow devices, all of these elements must be in the complement of this t ree  (i. e .  , in the 
cotree (fig. 12)). Thus,  the location of the constant flow pumps is also consistent. 

13 c 
Figure 12. - Cotree of tree shown in 

figure 11. Constant flow rate ele- 
ments are depicted with double lines. 

The answer to  the question is now: "Yes, the number and location of the pumps in 
the new network are consistent with the physical laws. ? '  

17 



I 1111~I II 1111111 

General Applicability of Modern Network Theory 

Modern Network Theory is applicable to a wide variety of systems. In the previous 
example, a hydraulic system, theorems of MNT were used to  decide whether the sys- 
tem was overspecified. It should be apparent that the conclusions did not in any way de- 
pend on the system being a hydraulic system. 

specified. The analysis of a system implies the ability to  follow the variation with time 
of the values of the through and across  variables for  each element. Bear in mind, how- 
ever ,  that the process of analysis is applied not to the real-world system but to a sym- 
bolic representation thereof. Whether the results of the analysis apply to the real-world 
system depends on the model o r  the graph embodying all the significant features of the 
real system. 

of variable pairs ,  MNT can be applied to analyze i t .  The problem then is under what 
circumstances an arbi t rary real-world system can be represented by such a graph. 
first requirement is that the performance of the system - that is, the time variation of 
some observable quantities o r  parameters - must be expressible in te rms  of se t s  of vari- 
able pairs.  Suitable variable pairs  must be found o r  invented. The second requirement 
is that the finite se t  of components which comprise the system be representable by a 
finite set of elements connected in a known way. It is not necessary that there be a one- 
to-one correspondence between the real  system components and the elements of the graph, 
a single physical component may be best represented by a multiplicity of elements. 
ally, the characteristics of each of the elements must be describable in t e rms  of func- 
tional relations among the variables. There must be one relation known for  each vari- 
able pair used. 

a subsystem is an interconnected set  of s imilar  components (e. g .  , electrical ,  mechan- 
ical, e tc . ) .  The analysis of such a subsystem will usually require a lesser  number of 
variable pairs  than would the analysis of the complete system as a whole. 

That MNT can be readily applied to  hydraulic systems and to  electrical systems is 
perhaps obvious. But the reader may have some difficulty in imagining how this type of 
analysis can apply to  a dynamic mechanical system; say for  instance, a spring-mass- 
dashpot system. In this system, the components themselves are in motion, and there is 
no "real" thing which flows through the components. Nevertheless, MNT can be applied 
to systems of this type, and a rather detailed treatment of a typical problem will prove 
doubly beneficial. F i r s t ,  mechanical systems are interesting in themselves. Secondly, 
analysis of such a system will illustrate two of the general problems of applying MNT: 
(1) how to make a proper selection of variable pairs ,  and (2) how to meter these variables. 

Much more can be done with MNT than merely determining whether a system is over- 

Given a graph with elements whose characterist ics a r e  expressible in t e rms  of se t s  

The 

Fin- 

Many complex systems may be considered as functioning se t s  of subsystems , where 
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Metering 

The voltage-current pair  is a useful one since meters  are available for  the measure- 
ment of each. Charge meters  can also be constructed, but they are not nearly as simple 
and as convenient as current meters .  
of the voltage-current pair  since the three basic types of electrical  components ( i . e . ,  
res is tors ,  inductors, and capacitors) can all be described in t e rms  of voltage and current 
relations. Note that again the voltage-charge pair  also satisfies the third condition. 

The two requirements on the variables as given by equations (1) and (2) imply that 

The third condition is also satisfied by the choice 

numbers which represent the variable values must be measured o r  determined in a very 
particular manner. 
sign. 
system that is to be used for  any particular variable pair .  In the case of electrical  sub- 
systems, both voltage and current are conventionally measured in such a way that all 
requirements for  MNT analysis a r e  met.  This is not the case,  for  example, in linear 
mechanical subsystems, where length and force are usually the variables of interest .  
Length, an across  variable, is conventionally measured by means of a meter (e. g. , a 
ruler)  that, in general, does not f i x  a sign to  go with the magnitude of this variable. Also, 
while the usual force meter  may provide a sign, it refers to ideas such as tension o r  com- 
pression, which unfortunately are not consistent with the requirements. 

in a simple and consistent set  of techniques which will produce variable values that com- 
pletely satisfy all requirements and thus allow for  the unrestricted use of MNT in the anal- 
ysis of finite linear mechanical subsystems. 

The principal requirement is the provision of a coordinate system upon which all mea- 
surements of force and length (or velocity, acceleration, e tc . )  can be based. In the anal- 
ysis of a typical linear mechanical subsystem, a Cartesian coordinate system appears to 
be the most useful reference. The coordinate system belongs to the actual physical net- 
work and not to the graph which is drawn to represent the network. 

In some cases it appears advantageous to consider a graph which is a union of three 
disjoint subgraphs, each representing one component of the three-dimensional coordinate 
system. This, of course,  would result in three variable pairs  (six variables) associated 
with each component of the network. The summation of the across  variable would then be 
zero around any circuit, and the length variable would be a satisfactory MNT variable. 

requires that conventional force-measuring meters  be used and interpreted in a noncon- 
ventional manner. 

car ry  the idea of plus o r  minus along with the magnitude, but these signs refer to  ideas 

This applies to  the determination of both magnitude and arithmetic 
This last point places definite restrictions on the characteristics of the metering 

An attempt at reinterpreting the response of the length and force meters  has resulted 

The force variable measurement is not quite as easily adapted for  use. The procedure 

For  example, consider a spring-type force meter .  The scale on this device may 
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such as compression and tension which, again, are not consistent with the MNT require- 
ments. It is a consequence of the requirements that reversal  of the meter connections 
must result in reversal  of the sign of the measurement, but this is not the case for force 
meters  used in the usual manner. This point constitutes a major failing of previous work 
which has attempted to apply the MNT techniques to mechanical subsystems (e. g. , ref. 5). 
It is, however, possible to obtain the proper response in the following way. 

measuring operation. In other words, the length changes within the force-measuring 
device that a r e  interpreted as force a r e  measured in the same manner as any other length 
in the network. Reversal of the meter is interpreted as a switch of the connections to the 
meter from one end to the other without physically turning the meter end for  end. (Fig. 1 3  
should clarify this operation. ) 

First of all, the meter  is alined with the same coordinate system used in the length- 

(a) Normal. 

P 

coordinate 
system 

(b) With meter 
reversed. 

Figure 13. - Force measurement. 

In this manner, the magnitude and the sign of the force variables wi l l  be consistent 

Once a consistent variable set  is defined, the MNT techniques provide a methodology 
with the MNT requirements. 

for the establishment of the defining equation for the subsystem. This system equation 
will be in the form of a coefficient matrix times a column matrix of all subsystem vari- 
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ables, the product of which is equal to another column matrix that contains all zeros and 
constants. The equation as written in matrix notation is 

C V = K  

where C is the coefficient matrix,  V represents the column matrix containing all of the 
variables, and K is the column matrix containing all zeros and constants. 

Mec ha n ica I Subsystems 

An example of a linear one-dimensional mechanical system (fig. 14) is used to 

Figure 14. - Linear 
one -dimensional 
mechanical system. 

demonstrate the manner in which the system equation is actually formed. The K element 
is a spring, the M element is a mass ,  and the B element is a dashpot o r  motion- 
damping device. It is assumed that we a re  interested in an analysis of the forces and 
displacements of this arrangement as a function of t ime, and it is further assumed that 
motion and displacement wi l l  take place only in the vertical direction ( i . e . ,  up and down 
only). 
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Before proceeding with the generation of the system equation, it is necessary to com- 
pose a representative graph of the network that will correspond to the variables of inter- 
es t .  Since the elements of graphs a r e  always two-terminal elements, it is necessary to 
depict each of the network components in te rms  of two-terminal equivalents. 
spring and dashpot , this is a trivial matter since these devices already have two termi- 
nals. It can be considered that the characteristics of a mass  a r e  measured with respect 
to some reference point , and this point may be considered as the other terminal of this 
apparently one-terminal device. This reference point may be any point that is stationary 
with respect to the coordinate system used for  measuring the problem variables. For  
convenience, the reference is chosen to be the support to which the spring and dashpot 
elements are physically connected. 

A graph of the network may then be drawn as shown in figure 15,  where the elements 
1, 2 ,  and 3 represent the spring, dashpot, and mass in that o rder ,  and where the arrows 
on the elements a r e  all arbitrari ly directed downward. 

For  the 

to all 

Figure 15. - Graph of linear 
one -dimensional mechanical 
system. 

The format for the system equation is, in general, as follows: 

where Sb is a submatrix that defines a basis set  of segs,  Bb is a basis set  of circuits, 
R1 and R2 describe the terminal characteristics of the individual network components 
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in the general isolated condition, and C is a submatrix of constants associated with the 

R1 R2 . For this example an Sf and a Bf will  be used for  the Sb apd Bb. 

based on the set  of branches of some t ree  of the graph and will thus contain (v - 1) segs.  
Since the graph of this network contains two vertices, a set of fundamental segs will con- 
s is t  of one seg. 

The set  of fundamental circuits can be based on the cotree that is the complement of 
the t ree  used to define the Sf submatrix and will  have (e - v + l), or  two, circuits con- 
tained in it. 

Since a t ree  of this graph consists of simply one element and the graph contains 
three elements, any one of these may be selected as the t ree  used to define the Sf and 

elements 2 and 3.  

As was described in the section Matrix Notation, a fundamental set of segs can be 

I 

I Bf submatrices. Element 1 shall be chosen for this example. The cotree thus contains 
The Sf then is 

Basedon 1 11 1 11 

where the direction of the seg is taken to be such that the branch upon which the seg is 
based is entered a s  a plus one. The Bf to be used in the analysis is 

Based on 2 r l  1 0 1  

Based on 3 L-1 0 11 
The submatrix describing the terminal equations is generated in the following manner. 

The relation for  the spring device is 

Lo < 0 

where yl(t) is the time-dependent "through" variable (i. e .  , force),  xl(t) is the time- 
dependent "across" variable (in this case distance or  length) as measured in the appro- 
priate manner described in the previous section, K is the "spring constant, '' and Lo 
the length of the spring at t = 0. 

For the purpose of making self -consistent measurements, the coordinate system 
origin is placed at the "tail-of-the-arrow" terminal of each device, and the length mea- 
surement is noted at the point where the other terminal meets the coordinate axis. For  
this example, "up" is arbitrari ly defined as the positive direction. Thus, the Lo for  
the spring is less  than zero (i. e. , negative), as indicated in the terminal equation for  this 
device. (Fig. 16 may help to clarify this point.) Similar arguments are applied to the 
measurement of the force variables. 

c 

k 
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f 

- 

3- 

Coordinate 
system 

Q 

6 
Spring K element 

+ I  

in graph - 
Lo measurement 

Figure 16. - Details of measurement of spring parameters.  

The terminal equations for the dashpot and the mass  are 

Mass : 

y3(t) = MX3(t) + w w > o  

where B is the dashpot constant, M the mass of the mass device, k2(t) the f i rs t  deriva- 
tive with respect to time of the length of the dashpot, x3(t) the second derivative of 
x3(t) with respect to t ime, and W the weight of the mass device. Note that W repre- 
sents the value of force for  no acceleration of the body. 

The terminal equations a r e  then put into a consistent matrix form as follows: 

Y2(t) - BX2(t) = 0 

Y3(t) - Mxg(t) = W 

and then 

24 



-K 

0 

0 

- 

0 

0 

d2 

dt2 
-M ~ 

0 

d 
dt 

-B - 

0 

2 where d/dt and d /dt2 are differential operators representing the first and second 
derivatives. 

All par ts  of the system equation are now available in the proper form,  so  the equa- 
tion can be assembled as follows: 

where 

Sf = [l 1 11 

-K 

0 

0 

0 

d 
dt 

-R - 

0 
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and 

Thus, the system equation becomes 

1 1  

0 0  

D O  

L O  

3 1  

I O  

0 0 

-1 1 

-1 0 

-K 0 

d 
dt 

0 -B- 

0 0 

- 

-KLo 

0 

W 

d2 

dt2 - 
-M - 

X 

0 

0 

0 

KLO 

0 

W 

- 

This particular form of the system equation is called the primary system equation, and 
can be reduced to a more compact form called the secondary system of equations by a 
ser ies  of steps that depend somewhat on the particular form of the R1R2 submatrix. 
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For the arrangement given in this problem, the following represents the secondary 
equation formulation : 

Sf(-R2)Sp3(t) = -S,C 

where Si means the transpose of 

which produces 

where 

K O  

d 0 B-  
dt 

0 0 

- 

Sf. Thus, 

0 

0 

d2 M- 
dt2- 

I 

x3(t) = -[1 1 

Mx3(t) + Bk3(t) + Kx3(t) = KLo - W 

M > 0 ,  B > O ,  K > O ,  L o < O ,  

l1 

w > o  

- KL, 

0 

W 

This is the well-known result expected for the mechanical system under analysis. Sim- 
ilar results have been obtained for  rotational, hydraulic, and thermal subsystems. 

A most significant result of this phase of the work has been a complete clarification 
of the requirements for MNT analysis of any subsystem, and the development of a rea- 
sonable methodology for  satisfying the requirements. The value of this result is most ap- 

Another very helpful result of the investigation has been the realization that the quan- 
1 preciated when attempting to extend MNT analysis techniques to man as a subsystem. 

I 
t i t ies represented by the variable pairs  of a subsystem need not really exist as entities 
but need only represent useful ideas that can be correlated to the observable character- 
istics of the subsystem. Thus, a choice of variables for a biological subsystem can be 
based simply on the phenomenological appearance of this subsystem to the remainder of 
the system. 
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Mixed Systems 

1 w 3  
4 2 

Almost without exception, complex systems are composed of a mjxture of subsystems 
of different types. If the MNT techniques a r e  to be useful as a systems analysis tool, it 
is necessary that they can be made to handle the multiple sets of variable pairs  associated 
with such mixed systems. 

analysis of systems with more than one variable pair ,  provided that it is possible to  meet 
the summation requirements on the across  and through variables. This can be accom- 
plished if the graph of a mixed system is chosen in such a way that it is never necessary 
to sum variables of different types. 

graph representing elements associated with each variable pair ,  no circuit o r  seg will 
contain elements associated with more than one variable pair. Thus, it will  never be 
necessary to include, for  example, both voltage and length in the same summation. 

a circuit must still sum to zero provided that both variables satisfy the general require- 
ments. It is clear that the sum of voltages around a circuit of the girders  of a bridge 

It can be shown that none of the requirements of the MNT methodology precludes the 

I 

If the graph of a system network is drawn as a union of disjoint subgraphs, each sub- * 

It should be pointed out, however, that voltage and length variables associated with 

-- C 

d 7 
YB e 

I 

Figure 17. - Electromechanical 
system. 
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must be zero,  just as is the sum of forces at a junction of electrical components. But in 
the interest of simplicity the disjoint union of subsystem graphs is used in the following 
example. 

both electrical and mechanical properties that a r e  significant to the system operation. 
The problem is to determine the value of all of the system variables. 

The establishment of the system graph is now made on the basis of the method dis- 
cussed for mixed systems. Since there a r e  two type of variable pairs (voltage-current 
and length-force) associated with the network, the graph is made up as a disjoint union 
of two subgraphs, one based on the electrical subsystem and the other on the mechanical 
subsystem. Figure 18 is the graph chosen for the analysis of this example. Note that 

have one element in the graph for  each variable pair  associated with it. Again, the 
arrows that provide a basis for  establishing directedness of the measurements a r e  as- 
signed arbitrari ly.  

made for  this problem: 

Consider the electromechanical system of figure 17. Note that the W-element has 

D the W device appears twice in the system graph. In general, a network component will  

Next  the Sb and Bb matrices a r e  formed. The following represents the choice 

C e 

b 

Sb = cm 

d 

e 

3 2  

-1 0 

0 1  

0 0  

0 0  

0 0  

1 1 4  5 6 7 
I 

I 
1 1 0  0 0 0 

-1 I o  0 0 0 
- - _ I  - _ _ -  - - _ _  

0 ' 0  -1  1 0 

0 ' 0  0 -1  1 

0 I 1  0 0 -1 
I 

I 

I 

(Electrical) 

(Mechanical) 

(a) Mechanical. (b) Electrical. 

Figure 18. - Graph of electromechanical system. 
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1 1 1 I 0 0 0 0 (Electrical) 
--I-- - - - - 

0 j 1 1 1 1 (Mechanical) 1 
lo E 

t 
L - 

5 10 15 0 
Current,  A 

Figure 19. - Characterist ics of 
C device (battery). 

The next step is to  determine the matrix that describes the individual component 
characteristics. 
given for  each device. 
measured terminal characteristics shown in figure 19. 
device can be stated as follows: 

The variable relations are to be obtained from the performance plots 
For example, the C device (battery) has the laboratory- 

The variable relation for  this 

where x and y refer to the across  and through variables, respectively. The mathe- 
matical signs ascribed to the t e rms  of the relation are based on the orientation of the 
arrow assigned to element 1. The more standard form of relations for a battery would 
be as follows: 

2 
15 

Terminal voltage = 7 - - Load current 

or 
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x(t) = 7 - - 2 y(t) 
15 

but this form would not be consistent with the rules that have been laid out in the preced- 
ing discussion and would not be compatible with the MNT analysis technique. 

lows : 

results in 

The same technique is applied to the remaining components of the network as fol- 

The R device (element 2) is described by two plots, as shown in figure 20, which , 

* 

0 5 10 15 
Current, A 

v1 
E 
% 

"E 
1 

0 5 10 15 
Time, sec 

Figure 20. - Characteristics of 
R device. 

5 
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The B device or dashpot (element 6) is described graphically in figure 21, from which 
is derived the relation 

Y6(t)  = - 100 X,(t) 10 < x6 < 25 
12 

where the dot over the x refers to  the derivative with respect to  time. 

200 r 

I ~ . .  I __ ~ . I I I 

0 10 20 30 
Length, in. 

Figure 21. - Characterist ics of 
B device (dashpot). 

The W device (elements 3 and 4) is described by three plots (fig. 22); one electrical, 
one mechanical, and one mixed. The mixed plot can be interpreted as describing the 
"coupling" between the electrical and the mechanical subsystems. 

F i r s t ,  the electrical characteristics, as described in figure 22(a), result in 

and the mechanical characteristics, as described in figure 22(b), result  in 

The coupling plot (fig. 22(c)) modifies the x,(t) relation, which then results in 

x,(t) = 0.1  [Y3(t)I - 20 
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1 i 

0 5 10 
Current,  A 

(a) Electrical  charac- 
terist ics.  

d 
.d 

5 10 15 
Tension, lbf 

(b) Mechanical characterist ics.  

19 1 I l l l l l l l l l l l l l l  
0 

0 5 10 
Current, A 

(c) Coupling between 
electrical and mechan- 
ical subsystems. 

Figure 22. - Characteristics of W device. 
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The mass  (element 7) is assumed to weigh 5 pounds, s o  its variable relation is 
simply 

y7(t) =-X7(t) 5 - 5 
3 2 . 2  

where 3 2 . 2  is the gravitational constant. 

d 
.d 

B 
3 
M c 

13 

12 

11 I I  I I  1 I l l  I I I I  

0 5 10 15 
Tension, lbf 

Figure 23.  - Characteristics of 
K element (spring). 

The spring (element 5) is described in figure 23,  which produces 

x5(t) = 0 . 1 2  y5(t) - 1 1 . 8  

As was done in the preceding examples, the terminal relation for each system com- 
ponent is arranged in a form consistent with matrix notation. There is a definite advan- 
tage to either an x(t) o r  y(t) explicit arrangement , but for the se t  of terminal relations 
derived for this system neither of the two arrangements can be conveniently formed. 
The matrix formulation will thus be in implicit form. 
is then formed: 

The terminal relations submatrix 

. 
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0.2 

0 

0 

0. lo2 

0 

0 

0 

0 0 0  0 

R2(t) 0 0 0 

2 
15 

0 - 0  0 

0 0 0  0 

0 0 0 0.12 

0 0 0  0 

0 0 0  0 

0 0 1 - 1  I 0 0 

I 
0 0 1  0 -1 0 

I 

I 

I 

I 
I 

I 

I 

0 0 1  0 

0 0 1  0 

0 0 1  0 

-1 0 1  0 

0 -11 0 

0 -1 

0 0  

0 0  

0 0  

0 0  

where D is the t ime derivative operator. 

0 ’  0 0 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 100 D 0 -  
12 

5 c  0 0 - D’ 
32 

The primary system equation is then assembled in the same manner as in the pre- 
ceding all-mechanical example. This equation is as follows: 
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3 2 1 4 5  6 7 3 2 1 4 5  6 
- 

-1 

0 

7 
r -  

0 

0 

0 

0 

0 

0 

0 

0 

0 

-7  

20 

11.8 

0 

5 

- ..., 

0 

0 

I 

0 1  
0 

I 
I 

-1 I 
- - J  

1 1  0 0 
I 

1 
I 

I 
I 0 -1 

0 R2(t) 0 0 0 0 

0 0 L o  0 0 

0 .1o2 0 0 0  0 0 

15  

0 0 0 0 0.12 0 

0 0 0 0  0 -1 

0 0 0 0  0 0 

- 

I 
I 

-l I 

0 1  
I 

1 
0 

I 
l I  

I 1  1 1  
I 
I I o 0 0 1 1  1 1 

- - - - - - _ - - - - - - - - - - - - 
I 

0 1 - 1  0 0 0 0 0 0 
I 

I 
I 

0 1  0 -1 0 0 0 0 0 

0 0 0 1  0 0 -1 0 0 
I 

0 1  0 0 0 -1 0 0 0 
I 
I 

0 1  0 0 0 0 -1 
I 

0 1 0  0 0 0 0 - 
I 12 

0 0 

0 100 

I 

I 
I 

0 1  0 0 0 -1 0 0 0 

0 1  0 0 0 0 -1 0 0 

- 1 1 0  I 0 0 0 0 0 A D Y  32 

The solution of this matrix equation in terms of a set  of initial conditions can be accom- 
plished by a number of different methods. In the case of this example, a digital computer 
program was  written and appears in the appendix, along with some of the results for two 
sets of initial conditions. 
(position of the mass x7(t)) as a function of time. The two initial condition sets  differ 
only in that in case 2 the mass  has an initial downward velocity. 

pletely straightforward method for obtaining a mathematical system equation for this 
mixed system. The author is not aware of any other technique that could duplicate the 
simplicity of this method. It should be clear from this example that mixed systems in 
general will respond to the MNT analysis technique in a straightforward and reasonable 
manner. 

Figure 24 shows a plot of just one of the system variables 

It is seen in the preceding example that the modified MNT techniques provide a com- 
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Time, sec 

Figure 24. - Position of mass as function of time for two sets  of initial conditions. 

CONCLUSIONS 

In view of the results obtained in the analyses of the examples presented in this 
report ,  and after consideration of the techniques used to  obtain these results,  certain 
significant conclusions can be stated: 

lems in the electrical  engineering area, but may be considered applicable to the analysis 
of systems problems in general under these conditions: 

o r  devices whose phenomenological characteristics are definable in t e rms  of mathemat- 
ical relations of variable pairs .  

1. The body of knowledge called Modern Network Theory is not at all limited to prob- 

(a) The systems are made up of (or can be considered to be made up of) elements 

(b) The elements o r  devices a r e  interconnected in a describable manner. 
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2. There is no requirement that the system variables represent tangible system 
entities. It is, however, necessary that they satisfy certain general requirements on 
variables and variable pairs .  

3.  There is no requirement that interconnections between elements o r  devices be 
physical. It is only necessary that interrelations between such elements o r  devices can 
be described in te rms  of the defining system variables. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, August 18,  1969, 
120-27. 
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APPENDIX - COMPUTER PROGRAM AND RESULTS 

FOR ELECTROMECHANICAL MIXED SYSTEM 

Solutions for the electromechanical mixed system sample problem given in the main 
text can be obtained with the digital computer program presented in this appendix. The 
program is written in FORTRAN IV and includes ample comment statements as an aid to 
understanding the various steps used to arr ive at the solutions. 

A sample input data listing is also included for two different sets of conditions. In 
the first case the mass  begins at rest, while in the second case the mass  has an initial 
velocity. 

puter program. Appropriate headings (as supplied by the computer) appear preceding 
each set  of output so as to properly identify the case to which the output applies. 

Note that the output values are to be interpreted in te rms  of the orientation of the 
appropriate elements (i. e .  , the arrows) to which they belong. It should also be pointed 
out that the values displayed in the output listing have been truncated to allow printing of 
all 10 columns on one page line. A small  change in format statement 105 to provide 
at least four decimal places in the output values is recommended for serious use of 
this program. 

A tabulation of the computer output for  the two cases follows the listing of the com- I '  

PROGRAM F O R  THE S O L U T I O N  OF T H E  M E C H A I \ 1 I C A L / E L E C T R I C A L  M I X E D  S Y S T E M  
L A N G U A G E  I S  F O R T R A N  I V  

$ I H F T C  E L M E C H  DECK 
D I M E N S I O N  S O L ( ~ ) T V ( ~ ) T Y S ( ~ ) T P K ( ~ T ~ )  
I N T E G E K  C A S E  
P I =  3.14159265 
G= 32.2 

2 R E A D ( 5 1 1 0 6 )  C A S E  
C T € S T  FOR E N D  OF D A T A  I N P l J T  

I F ( C A S E  - 9 9 )  4 1 6 0 ~ 4  
C XK = W I R E  C O N S T A N T ,  X 6 0  = I N I T I A L  L E N G T H  OF D A S H P O T  
C X 7 D  = I N I T I A L  D I S P L A C E P E N T  O F  M A S S T  X 7 P O  = I N I T I A L  V E L O C I T Y  O F  M A S S  

4 R E A D ( S T ~ O ~ )  X K T X ~ O T X ~ O T X ~ P O  
C N = T O T A L  N U M B E R  OF S O L U T I O N  P O I N T S ?  H = D E L T A  T I M E  

R E A D (  59  1 0 O ) N  
R E A D ( 5 r l O l  ) H  
S O L ( l ) =  -21.0/4.0 
Y ( 1 ) =  X 6 0  
Y ( 2 ) =  X 7 0  
Y ( 3 ) =  X 7 P O  
S O L ( Z ) =  ~ 3 1 . R - X K ~ S O L ~ 1 ~ + S O L ~ 1 ~ - X 7 0 ) / 0 . 1 2  
S C I L ( ~ ) =  o , 2 + s n L ( i )  
S O L ( 4 ) =  S O L ( 1 )  
S O L  ( 5 ) = -1 .Z*SOL ( 1 1 
S O L ( 6 ) =  X K * S O L ( l ) * S O L ( l )  - 20.0 
S O L  ( 7  ) =  
W R I T E ( 6 r l 0 7 ) C A S E  
W R I T E ( 6 r l O Z  1 
W R I T E ( ~ T ~ ~ ~ ) X K , H T N  

0, 1 2 + S O L  (2 )-11.8 
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$ D A T A  
1 

0,100 -12.0 42 -0 0.0 

0,100 
100 

L 
0.100 -12.0 42 -0 10.0 

100 
0. L O O  

99 

40 



C A S E  1 

S O L U T I O N  Y l = Y 2 = Y 3  AND Y4=Y5=Y6=Y7 
K =  0.10 D E L T A  T =  0 .10  NlJMRER OF S O L U T I O N  P O I N T S =  1 0 0  

I N I T I A L  C O N D I T I O N S  X 6 ( 0 ) =  -12.000 X 7 ( 0 )  = 

T 

0. 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1 e3 
1.4 

i 

1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 

2.6 
2.5 

2.7 
2.8 
2 09 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3 .9 
4.0 
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 

Y 3  

-5.25 
-5.06 
-4.89 
-4.73 
-4.59 
-4.46 
-4.36 
-4.26 

-4.13 
-4.08 
-4.06 
- 4 . 0 4  
-4.04 
-4. Oh 
-4.08 
-4.13 
-4.19 
-4.26 
-4 36  
-4.46 
-4.59 
-4.73 
-4.89 
-5.06 
-5.25 
-5 4 6  

-4.19 

-5.67 
-5.90 

-6.37 
-6.61 
-6.83 
-7.03 
-7.21 
-7.35 
-7.44 
-7 049  
-7.49 
-7 044 
-7.35 
-7.21 
-7.03 

-6.14 

-6.83 

-6.37 
-6.61 

-6.14 

Y7 

-7.97 
-5.13 
-2.68 
-1 - 7 5  
-2 6 5  
-4.74 
-6.89 
-8.04 
-7.71 
-6.20 
-4.35 
-3 - 0 9  
-2.97 
-3.93 
-5.42 
-6.65 
-7.05 
-6.52 

-4.32 
-3.78 
-4.03 
-4.8h 
-5.84 
-6 . 4 8  
-6.51 
-5.99 
-5.21 
-4.57 
-4.34 
-4.55 
-5.01 
-5.38 
-5.40 
-4.99 
-4.27 
-3.53 
-3.05 
-2.99 
-3.35 
-3.95 
-4.56 
-4.97 
-5.13 
-5.07 
-4.96 
-4.92 

-5.41 

x 3  

-1.05 
-1.01 
-0.98 
-0.95 
-0.92 
-0 8 9  
-0.87 
-0.85 
-0 8 4  
-0.83 
-0.82 
-0.81 
-0.81 
-0.81 
-0.81 
-0.82 
-0.83 
-0.84 
-0.85 
-0.87 
-0.89 
-0.92 
-0.95 
-0.98 
-1.01 
-1 005 
-1 - 0 9  
-1 1 3  
-1.18 
-1 e23 
-1.27 
-1 032 
-1 - 3 7  
-1 -41  
-1 044 
-1 0 4 7  
-1 - 4 9  
-1 5 0  
-1.50 
-1 0 4 9  
-1.47 
-1.44 
-1.41 
-1 037  
-1 3 2  
-1.27 
-1.23 

x 2  

-5 25  
-5.31 
-5.37 
-5.42 
-5.47 
-5.51 
-5.55 
-5.58 
-5 .60  
-5.62 
-5.64 
-5.65 
-5.65 
-5.h5 
-5.65 
-5.64 
-5.62 
-5.60 
-5 . 5 8  
-5.55 
-5.51 
-5.47 
-5.42 
-5.37 
-5.31 
-5.25 
-5.18 
-5.11 
-5 . 0 3  
-4.95 
-4.88 
-4.80 
-4.72 
-4.66 
-4 .60  
-4.55 
-4.52 
-4.50 
-4.50 
-4.52 
-4.55 
-4.60 
-4.66 
-4.72 
-4. 80  
-4.88 
-4.95 

x 1  

6.30 
6.33 
6.35 
6.37 
6.39 
6 .40  
6.42 
6 .43  
6 . 4 4  
6.45 
6.46 
6.46 
6.46 
6 .46  
6.46 
6.46 
6.45 
6 . 4 4  
6.43 
6.42 
6.40 
6.39 
6.37 
6.35 
6.33 
6.30 
6 - 2 7  
6 .24  
6.21 

6.15 
6.12 
6.09 
6.06 
6 .04  
6.02 
6.01 
6.00 
6.00 
6.01 
6.02 
6.04 
6.0h 
6.09 

6.15 
6.18 

6.18 

6.12 

42  - 0 0 0  

x 4  

-17.24 
-17.44 
-17.61 
-17.76 
-17.90 
-18.01 
-18.10 
-18.18 
-18.25 
-18 - 3 0  
-18.33 
-18.36 
-18.37 
-18.37 
-18.36 
-18.33 
-18.30 
-18.25 
-18.18 
-18.10 
-18 .01  
-17.90 
-17.76 
-17.61 
-17.44 
-17 .24  
-17.02 
-16.78 
-16.52 
-16.23 
-15.94 
-15 .64  
-1 5.34 
-15 - 0 6  
-14.8 1 
-14.60 
-14 .46  
-14.38 
-14.38 
-14.46 
-14.60 
-14.81 
-15.06 
-15.34 
-15 .64  
-15.94 
-16.23 

DX7/DT = 

x 5  

-12.76 
-12 - 4 2  
-12.12 
-12.01 
-12.12 
-12.37 
-12.63 
-12.77 
-12 .73  
-12.54 
-12.32 
-12.17 
-12.16 
-12.27 
-12 .45  
-12.60 
-12.65 
-12.58 
-12.45 
-12.32 
-12.25 
-12 028 
-12.38 
-12.50 
-12.58 
-12.58 
-12.53 
-12.42 
-12.35 
-12.32 
-12.35 
-12  - 4 0  
-12.45 
-12.45 
-12.40 
-12.31 
-12.22 
-12.17 
-12.16 
-12.20 
-12.27 
-12.35 
-12.4@ 
-12.42 
-12.41 
-12.39 
-12.39 

0 .  

X6 

-12.00 
-12.08 
-12.12 
-12.15 
-12.17 
-12.22 
-12.29 
-12.38 
-1 2 0 4 8  
-12.56 
-12.62 
-12 .67 
-1 2 0 7 0  
-12.74 
-12.80 
-12.87 
-12.95 
-13  - 0 4  
-13.11 
-13.17 
-13.21 
-13.26 
-13.31 
-13.38 
-13.45 
-13.53 
-13.61 
-13.67 
-13.73 
-13.78 
-13.84 
-13 .89  
-13.96 
-14.02 
-14.09 
-14.14 
-14.19 
-14.23 
-14.25 
-14.30 
-14.34 
-14.40 
-14.45 
-14.51 
-14.57 
-1 4 6 4  
-14.69 

x7 

42.00 
41 093  
41.86 
41 - 9 2  
42.19 
42.60 
4 3  0 2  
43.33 
43.45 
43 .40  
43 .28  
43 .19  
43.23 
43.38 
43 .60  
43.80 
43.90 
4 3  . 8 6  
4 3  . 7 4  
43.59 
43.48 
4 3 . 4 4  
43.46 
43 .49  
43.47 
43.36 
43 .15  

42 .60  
4 2 . 3 4  
42.12 

42.88 

41 e93 
4 1 - 7 4  
41.53 
41.29 
41.06 
40.87 
40.78 
40 .81  
40.96 
41 .22  
41 5 5  
41 .91  
4 2  2 7  
42.62 
42.97 
43.32 
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C A S E  

T 

4.7 
4.8 
4.9 
5.0 
5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5 - 7  
5.8 
5.9 
6.0 
6.1 
6.2 
6.3 

6 -5 

6.7 
6.8 
6.9 

7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 
7 .8  
7.9 
8.0 
8 - 1  
8.2 
8.3 
8.4 
8.5 
80 6 
8.7 
8.8 
8.9 
9.0 
9.1 
9.2 
9.3 
9 .4  
9.5 
9.6 
9.7 
9.8 
9.9 

10.0 

6 . 4  

6.  6 

7.0 

42 

1 C O N C L U D E D  

Y 3  

-5 e90 
-5.67 
-5.46 
-5.25 
-5 - 0 6  
-4.89 
-4.73 
-4.59 
-4.46 
-4.36 
-4.26 

-4.13 

-4.06 
-4.04 
-4.04 
-4.06 
-4.08 
-4.13 
-4.19 

-4.19 

-4.08 

-4.26 
-4 36 
-4.46 
-4.59 
-4. 7 3  
-4.89 
-5.06 
-5.25 
-5 .46  
-5 - 6 7  
-5.90 
-6 .14  
-6.37 
-6.61 
-6.83 
-7.03 
-7.21 
-7.35 
-7 .44  
-7 .49 
-7.49 
-7.44 
-7.35 
- 7 - 2 1  
-7.03 
-6.83 
-6.61 
-6 . 37 
-6.14 
-5.90 
-5.67 
-5 - 4 6  
-5.25 

Y7 

-5 0 2  
-5.25 
-5 5 0  
-5.65 
-5.66 

-5.30 
-5.11 
-5.03 
-5.08 
-5.20 
-5.33 
-5.39 
-5.35 
-5.25 
-5.12 
-5.04 
-5 .04  
-5.11 

-5.51 

-5.22 
-5.31 
-5.35 
-5.33 
-5.27 
-5.22 
-5 .21 
-5.26 
-5.33 
-5.42 
-5.L7 
-5 046 
-5.39 
-5.29 
-5.15 
-5 00  
-4.82 
-4.62 
-4.39 
-4.12 
-3.86 
-3.65 
-3.55 
-3.60 
-3.79 
-4.11 
-4.49 
-4.84 
-5.10 
- 5  - 2 6  

-5.32 
-5.30 
-5.31 
-5.34 

- 5  32 

x 3  

-1-18 
-1.13 
-1 - 0 9  
-1.05 
-1 .01 
-0.98 
-0.95 
-0.92 
-0.89 
-0.87 
-0.85 
-0.n4 
-0.83 
-0.82 
-0.81 
-0.61 
-0.81 
-0.81 
-0.82 
-0 .83  
-0.84 
-0.85 
-0.87 
-0 .  P 9  
-0.92 
-0.95 
-0.98 
-1.01 
-1 0 5  
-1 0 9  
-1.13 
-1.18 
-1.23 
-1.27 
-1 - 3 2  
-1.37 
-1 e41  
-1 -44  
-1 047 
-1.49 
-1.50 
-1.50 
-1.49 
-1.47 
-1 e44 
-1 .Ltl 
-1.37 
-1.32 
-1.27 
-1.23 
-1.18 
-1.13 
-1 e09 
-1.05 

x 2  

-5.03 
-5.11 
-5.18 
-5.25 
-5-31 
-5 . 37 
-5 - 4 2  
-5.47 
-5.51 
-5.55 
-5.58 
-5 .60  
-5.62 
- 5 .  6 4  
-5.65 
-5.65 
-5.65 
-5.65 
-5 .64  
-5.62 
-5.60 
-5 5 8  
-5.55 
-5.51 
-5.47 
-5.42 
-5.37 
-5.31 
-5.25 
-5.18 
-5.11 
-5.03 
-4.95 
-4.88 
-4.80 
-4.72 
-4.66 
-4 .60  
-4.55 
-4.52 
-4.50 
-4.50 
-4.52 
-4.55 
-4.60 
-4.66 
-4.72 
- 4 . F O  
-4.88 
-4.95 
-5.03 
-5.11 
-5.18 
-5.25 

x 1  

6.21 
6.24 
6.27 
6.30 
6.33 
6.35 
6 . 37 
6.39 
6 .40  
6.42 
6.43 
6 . 4 4  
6 . 4 5  
6.46 
6 * 4 6  
6.46 
6 - 4 6  
6.46 
6.46 
6.45 
6 -44 
6.43 
6.42 
6.40 
6.39 
6.37 
6.35 
6.33 
6 .30  
6.27 
6.24 
6.21 
6.18 
6 .15  
6.12 
6.09 
6 -06 
6 . 0 4  

6.01 
6.00 
6.00 
6.01 
6.02 
6 . 0 4  
6.06 
6.09 
6.12 
6.15 
6.18 
6 .2 1 
6 .24  
6.27 
6.30 

6.02 

x 4  

-16.52 
-16.78 
-17.02 
- 1 7 . 2 4  
-17 .44  
-17.61 
-1 7 . 7 6  
-17.90 
-18.01 
-18.10 
-18.18 
-18.25 
-18.30 
-18 .33  
-18.36 
-1 8.37 
-18.37 
-18.36 
-18.33 
-1 8.30 
- 1 8 - 2 5  
-18.18 
-1 8.10 
-18.01 
-1 7 . 9 0  
-17 .74  
-17.61 
-17.44 
-17 .24  
-17.02 
-16.78 
-16.52 
-16.23 
-15 .94  
-15 .64  
- 1 5 . 3 4  
-15.06 
-14.8 1 
-14.60 
-14.46 
-14.38 
-14.38 
-14.46 
-14.60 
-14.81 
-15.06 
-1 5 .34  
-15 .64  
-1 5 - 9 4  
-16.7.3 
-1 6 . 52  
-16.78 
-17 002 
-17.24 

- x5  

-12 -40 
-12.43 
-12.46 
-12.48 
-12.48 
- 1 2  .'t6 
-12 .44  
-12.41 
-12.40 
-12.41 
-12.42 
-12 .44  
-12.45 
-12 .44  
-12 .43  
-12.41 
-12.40 
-12.40 
-12.41 
-12 .43  
-1 2.44 
-12.44 
-12.44 
-12 .43  
- 1 2 - 4 3  
-12.43 
-1 2 .43  
- I. 2 . 44 
-12.45 
-12.46 
-12.46 
- 1 2 . 4 5  
-12.43 
-12.L2 
- 1 2  .40 
-12 .38  
-12.35 
-12.33 
-12.29 
-12.26 
-12  .z4 
-12.23 
-12.23 
-12.26 
-12.29 
-12 .34  
-12 .38  
-12.'+1 
-12.43 
- 1 2  . L4 
-12.44 
-12.L.4 
-12.44 
-12 .44  

X6 

-14.75 
-14.82 
-14.88 
-14.95 
-15.01 
-15.08 
-15 .15  
- 1 5 . 2 1  
-15.27 
-15.33 
-15.39 
-15.46 
-1 5 52  
-15.58 
-15.65 
-15 .71  
-15.77 
-15.83 
-15.89 
-15.95 
-16.02 
-16.08 
-16.15 
-16.21 
-16.27 
-16.33 
-16.40 
-16.46 

-16.59 
-16.66 
-16.72 
-16.79 
-16.85 
-16.91 
-16.97 
-17.02 
-17.08 
-17.13 
-17.18 
-17.22 
-17.27 
-17.31 
-17.35 
-17.40 
-17.45 
-17.51 
-17.57 
-17.63 
-17.69 
-17.76 
-17.82 
-17.R8 
-17.95 

-16.53 

X7 

43.67 
44.03 
4 4 - 3 6  
44.67 
44.Y3 
45.16 
45 .35  
45.52 
45 .68  
45.84 
46.00 

46.26 
46.36 
46.43 
46.49 
4 6 . 5 4  
46.59 
4 6 . 6 4  
46.67 
4 6  . 7 0  
46 .70  
46.69 
46.65 
4 6  59 
46.52 
46.44 
46 .34  
46.22 
46.07 
45.89 
45.69 
4 5 - 4 5  
45.20 
44 .94  
44.68 
44.44 
44.2 1 
44.03 
43 .90  
43.85 
43.88 
44.00 
44.2 1 
44 .50  
44.95 
45.23 
4 5  6 2  
46.00 
46.37 
46 .71  
4 7 . 0 4  
47.35 
47.63 

4 h .  14 



C A S E  2 

S I l L l J T I O N  Y l = Y 2 = Y 3  A N D  Y4=Y5=Y6=Y7 
K =  0 .10  D E L T A  T =  0.10 r w t w E K  OF SOLUTION PI.JINTS= 100 

I h ! I T I A L  C O N D I T I O N S  X 6 ( 0 ) =  - 1 2 . 0 0 0  

T 

0 .  
0.1 
0 02 
0.3 
0.4 

0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1 e 4  
1.5 
1.6 
1.7 
1 .8 
1.9 
2 .0 
2.1 
2.2 
2.3 
2 .4  
2.5 
2.6 
2.7 
2 .8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 

0.5 

Y 3  

-5.25 
-5.06 
-4.89 
-4.73 
-4.59 
-4.46 
-4.36 
-4.26 
-4.19 

-4.08 
-4.06 
-4.04 
-4 .04  
-4.0h 
-4.08 
-4.13 
-4.19 

-4.36 
-4.46 
-4.59 
-4.73 
-4.89 
-5.06 
-5.75 
-5 - 4 6  
-5.67 
-5.90 
- 6 * 1 4  
-6 . 37 
-6.61 
-6.83 
-7.03 
-7.21 
- 7 0 3 5  
-7.44 
-7.49 
-7.49 
-7.44 
-7.35 
-7.21 
-7.03 
-6.83 
-6.61 
-6.37 

-4.13 

-4.26 

-6.14 

Y7 

-7.97 
12.35 
12 .92  
-9.75 
-4.73 
-0 .46  

1.05 
-0.64 
-4.40 
-F.20 
10.17 
-9.54 
-6 . 86 
-3.62 
-1.45 
-1.31 
-3.07 
-5.70 
-7.84 
-8.51 
-7 . 53  
-5.55 
-3.63 
-2.72 
-3.16 
-4.63 
-6.31 
-7.37 
-7.34 
-6.31 
-4.85 
-3.64 
-3.17 
-3.51 
-4.30 
-5.00 
-5.19 
-4.74 
-3.89 
-3.10 
-2 . 7 8  
-3.12 
-4.00 
- 5 . 0 4  
-5.84 
-6.12 
-5 . 87  

x3 

-1.05 
-1.01 
-0.98 
-0.95 
-0.92 
-0.89 
-0.87 
-0.85 
-0.84 
-0 .83  
-0.82 
-0.81 
-0.81 
-0.81 
-0.P1 
-0.82 
-0.83 
-0.84 
-0.85 
-0.87 
-0.89 
-0.92 
-0.95 
-0.99 
-1 001 
-1 .05 
-1 - 0 9  
-1 .13  
-1.18 
-1.23 
-1.27 
-1 . 32 
-1.37 
-1.41 
-1.44 
-1.47 
-1.49 
-1.50 
-1.50 

-1 - 4 7  
-1.44 
-1.41 
-1.37 
-1 3 2  
-1.27 

-1 - 4 9  

-1.23 

X2 

-5.25 
-5 .31  
-5.37 
-5.42 
-5 047 
-5.51 
-5.55 
-5.58 
-5.60 

-5.64 
-5.65 
-5.65 
-5.65 
-5.65 
- 5 . 6 4  
-5.612 
-5 .60  
-5.58 
-5.55 
-5.51 
-5.47 
-5.42 
-5.37 
-5.31 
-5.25 
-5.18 
-5.11 
-5.03 
-4.95 
-4.88 
-4.80 
-4.72 
-4.66 
-4.60 
-4.55 
-4.52 
-4 .50  
-4.050 
-4 .52  
-4.55 
-4.60 
-4.66 
-4.72 
-4.80 
-4.88 
-4.95 

-5.62 

X 7 ( 0 )  = 

x 1  

6 .30  
6.33 
6.35 
6.37 
6.39 
6 .40  
6.42 
6.43 
6.44 
6 .45  
6.46 
6.46 
h.46 
6 .46  
6.46 
6 .46  
6 -45 
6.44 
6.43 
6.42 
6 .40  
6.39 
6.37 
6.35 
6.33 
6.30 
6.27 
6.24 
6.21 
6.18 
6.15 
6.12 
6.09 
6.06 
6.04 
6.02 
6.01 
6.00 
6.00 
6.01 
6 - 0 2  
6.04- 
6 .06 
6.09 
6.12 
6.15 
6.18 

42 .000  

x 4  

-17 .24  
-17.44 
-17 .61  
-17.76 
-17.90 
-18.01 
-18.10 
-18.10 
-10.25 
-18.30 
-1 8.33 
-18.36 
-18.37 
- 1 8 - 3 7  
-18.36 
- 1 8 - 3 3  
-18.30 
-18.25 
-18 .18  
-18.10 
-18.01 
-17 .90  
-17.76 
-1 7 6 1 
-17 .44  
-17.24 
-1 7 .02  
-16.78 
-1 h .  5 2  
-16 .23  
- 1 5 . 9 4  
-15 .64  
-15 .34  
-15.06 
-14.81 
-14.60 
-14.46 
-14.38 
-14.38 
-14.46 
-14.60 
-14.81 
-15.06 
-15.34 
-15 .64  
-1 5.94 
-16.23 

DX7/1)T =10.000 

x5 

-12 - 7 6  
-13.28 
-13.35 
-12.97 
-12.37 
-11.8h 
-11.67 
-11.88 
-12.33 
-12.78 
-13.02 
-12.95 
-12.62 
-12 .23  
-1 1.37 
-11.96 
-12.17 
- 1 2 * 4 8 
-12.74 

-1 2.70 
-12.47 
-12.24 
-12.13 
-12.18 
- 1 2 . 3 6  
-12.56 
-12.68 

-12.56 
-12.38 
-12 .2L  
-12 .18  
-12.22 
-12.3% 
-12.40 
-12 - 4 2  
-12.37 
-12.27 
-12.17 
-12.13 
-12.17 
-12.28 
-12.40 
-12.50 
-12.53 
-12.50 

-12.82 

-12 .6a 

X6 

-12.00 
-12.13 
-12.28 
- 1 2 0 4 2  
-12 .51  
-12 .54  
-12 .53  
-12.52 
-12 .55  
-12.53 
-12 - 7 4  
-12.86 
-12.96 
-13 .03  
-13.05 
-13 .07  
-13.09 
-13.15 
-13.23 
-13.33 
-13 .43  
-13.50 
-1 3.56 
-13.60 
-13.63 

-1 3 .74  
-13.82 
-17.91 
-14.00 
-14.06 
-14.11 
-14.15 
-14 .19  
-14 .24  
-14.30 
-14.36 
-14.42 
-14.47 
-14.51 
-14.55 
-14.58 
-1.4 .62 
-14.68 
-14.74 
-14.82 

-13.6a 

- 1 4 - 8 9  

x7 

42.00 
42.85 
4 3 . 2 4  
43.15 
42.77 
42.40 

42 .58  

43 .71  
44.09 
44 .16  
43.95 
43.63 
43.38 
43.36 
43.56I 
43.87 
44.15 
44.2 5 
4 4 . 1 4  
43.87 
43.56 
4 3 . 3 4  
43.25 
43.28 
43 .32  
4 3 . 2 9  
43 .11  
4 2 J 9  
42 .38  
41.99 
4 1  - 6 7  
41.47 

41 .30  
41.24 
41.17 
41.12 

4 2  31. 

4 3 - 1 3  

4 1 - 3 6  

4 1 . 1 4  
41 .28  
41.56 
41.96 
42.42 
42  088 
43 .29  
43.63 

43 



C A S E  

T 

4.7 
4.8 
4.9 
5.0 
5.1 
5.2 
5.3 
5 04 
5.5 
5.6 
5.7 
5.8 
5.9 
6.0 
6.1 
6.2 
6.3 
6 . 4  
6.5 
6.6 
6.7 
6.8 
6 .9  
7 00 
7.1 
7.2 
7 .3  
7 . 4  
7.5 
7.6 
7 - 7  
7.8 
7.9 
8 e 0  
8.1 
8 - 2  
8.3 
8 94 
8.5 
8.6 
8.7 
8.8 
8.9 
9 -0 
9.1 
9.2 
9.3 
9 .4  
9.5 
9.6 
9.7 
9.8 
9.9 

10.0 
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2 CONCLUDED 

Y 3  

-5.90 
-5.67 

-5.25 
-5.06 
-4.89 
-4.73 
-4.59 
-4.46 
-4 . 36  

-5 4 6  

-4.26 
-4.19 
-4.13 
-4.08 

-4.04 
-4 .04  
-4.06 

-4.06 

- 4  0 8  
-4 .13  
-4 .19  
-4.26 
-4.36 
-4.46 
-4.59 
-4 .73  
-4.89 
-5 - 0 6  

-5 - 4 6  

-5 - 9 0  
-6 .14  

-5.25 

-5.67 

-6.37 
-6.61 
-6 8 3  
-7 .03  
-7.21 
-7.35 
-7 944 
-7.49 
-7.49 
-7 .44  
-7.35 
-7.21 
-7.03 
-6.83 

-6.37 
- 6 - 6 1  

- 6 - 1 4  
-5 9 0  
-5 067 
-5 4 6  
-5.25 

Y 7  

-5.33 
-4.82 
-4.61 
-4.79 
-5.23 
-5 069 
-5.93 
-5 8 6  
-5.51 
-5 - 0 9  
-4.78 
- 4 - 7 2  
-4.91 
-5.23 
-5 .49  
-5 . 5 9  
-5 .48  
- 5 - 2 4  
-5 .00  
-4.87 
-4.93 
-5.11 
- 5 - 3 4  
-5 50 
-5 .54  
-5 - 4 5  
-5.31 
-5.19 
-5.17 
-5.24 
-5.37 
-5.47 
-5.47 
-5.35 
-5.11 
-4 .81  
-4.50 
-4.22 
-4 .01  
-3.84 
-3 .73  
-3.68 
-3 .71  
-3 . R 4  
-4.07 
-4 .39  
-4 .74  
-5.05 
-5.28 
-5 039 
-5 .41  
-5 36  
-5 .31  
-5.29 

x 3  

-1.18 
-1.13 
-1.09 
-1 005  
-1 901 
-0.98 
-c .95 
-0-42 
-0.89 
-0.87 
-0.85 
-0.R4 
-0.83 
-0.82 
-0.81 
-0.81 
-0.81 
-0.81 
-0 .82 
-0.83 
-0 .84  
-0.85 
-0.87 
-0 8 9  
-0.92 
-0 095 
-0.98 
-1.01 
-1.05 
-1 009 
-1.13 
-1.18 
-1.23 
-1.. 2 7 
-1.32 
-1 - 3 7  
-1.41 
-1 0 4 4  
- 1  047 
-1 049  
-1 0 5 0  
-1 - 5 0  
-1 049  
-1 047 
-1 044 
-1 e 4 1  
-1.37 
-1 - 3 2  
-1 - 2 7  
-1 923 
-1.18 
-1 1 3  
-1 0 0 9  
-1 005 

x2  

-5 0 3  
-5.11 
-5 1 8  
-5.25 
-5.31 
-5.37 
-5 a42 
-5 947 
-5 .51  
-5.55 
-5 .58  
-5 - 6 0  

-5.64 
-5 .65  

-5 .62  

-5.65 
-5 65  
-5.65 
-5 .64  
-5.62 
-5 .60  
-5.58 
-5.55 
-5.51 
-5 .47  
-5 042 
-5.37 
-5 .31  
-5  25  
-5.18 
-5 .11  
-5.03 
-4 .95  
-4.88 
-4 .80  

- 4 - 6 6  
-4.60 
-4.55 
-4.52 
-4 .50  
-4 5 0  
-4 .52  
-4.55 
-4.60 
- 4 - 6 6  

-4 . 8 0  
-4 .88  
-4.95 
-5 . 03  
-5.11 

-5.25 

-4.72 

-4 .72  

- 5 - 1 8  

x 1  

6.21 
6 - 2 4  
6.27 
6.30 
6.33 
6.35 
6.37 
6.39 
6.40 
6 - 4 2  
6 - 4 3  
6 -44 
6.45 
6 - 4 6  
6.46 
6.46 
6.46 
6.46 
6.46 
6.45 
6.44 
6.43 
6.42 
6 - 4 0  
6.39 
6.37 
6.35 
6.33 
6.30 
6.27 
6.24 
6.21 
6 - 1 8  
6.15 
6.12 
6 - 0 9  
6.06 

6.02 
6 - 0 1  
6.00 
6 -00 

6.02 
6.04 
6 - 0 6  
6.09 
6.12 
6.15 
6.18 
6.21 
6 .24  
6.27 
6 - 3 0  

6 .04  

6 - 0 1  

x4 

-16.52 
-16 .78  
-17.02 
-17 .24  
-17.44 
-17.61 
-1 7 - 7 6  
-17.90 
-18.01 
-13.10 
-18.18 
-18 .25  
-18 .30  
-15 .33  
-18.36 
-18 .37  
-18.37 
-13 .36  
-18 .33  
- 1 8  - 3 0  
-18 .25  
-18.18 
-18 .10  
-18 .01  
-17 .90  
-1 7 .76  
- 1 7 . 6 1  
-1 7 . 4 4  
-17 .24  
-17 -02  
-16.78 
-16.52 
-16 .23  
-1 5 - 9 4  
-15 .64  
-1 5 . 3 4  
-15 .06  
-14 .81  
-14 .60  
-14 .46  
-14 .38  
- 1 4 - 3 8  
-1 4.46 
-14.60 
-14.81 
-15 .06  
-15 .34  
-15 .64  
-15 .94  
- 1 6 - 2 3  
-16 .52  
-16.78 
-17.02 
-17 .24  

x5  

-12.44 
-12.38 
-12.35 
-12.37 
-12 .43  
-12.48 
-12.51 
-12.50 
-12.46 
-12 .41  
-12.37 
-12.37 
-12.39 
-12 .43  
-1 2 4 6  
-12 047 
-12 .46  
-12 .43  
- 1 2 - 4 0  
-12 .38  
-12 .39  
-12 .41  
-12 .44  
-12 .46  
-12 .46  
-12.45 
-12 .44  
-12  - 4 2  
-12.42 
-1 2 - 4 3  
-12 .44  
-12  - 4 6  
-12 .46  
-1 2 -44 
-12 .41  
-12.38 
-12 .34  
-12.31 
-12.28 
-12.26 
-12 .25  
-12 .24  
-12 .25  
-12  926  
-12.29 
-12.33 
-12.37 
-12 .41  
-12 .43  
-12  - 4 5  
-12.45 
-12  044  
-12 .44  
-1 2 - 4 3  

X6 

-14.96 
-1.5.02 
-15.07 
-15.13 
-15.19 
-15 .25  
-15.32 
-15  040 
-15.46 
-15 .53  
-15 .59  
-15 - 6 4  
-15 .70  
-15.76 
-15.83 
-15.89 
-15.96 
-16.02 
-16 .09  

-16 .20  
-16 .26  
-16 .33  
-16 .39  
-16.46 

-16 .59  
-16 .65  
-16 .71  
-16.78 
-16.84 
-16.90 
-16.97 
-17.03 
-17 .10  
-17.16 
-1 7.2 1 
-17.27 
-17 .31  
-17.36 
-17 .41  
-17 .45  
-17.50 
-17 .54  
-17 .59  
-17.64 
-17 .69  
-17.75 
-17 .81  
-17.88 
-17 .94  
-18.01 
-18.07 
-18 .14  

-16 .14  

-1 6 52 

x7 

43 .91  
4 4 - 1 8  
44.45 
44.75 
4 5  0 6  
45 .35  
4 5  6 0  
4 5  . 7 9  
4 5  . 9 3  
46 .04  
46 .14  
4 6  . 26 
46 .39  
46.52 
46 .64  
46 .73  
46.78 

46.82 
46.82 
4 6  . 8 4  
46 .86  
46.87 
46 .86  
46.82 
4 6 - 7 4  
4 6  . 6 4  
46 .51  
46 .38  

46 .81  

46 .23  
46.06 
45 .88  
4 5 - 6 6  

4 5 . 1 5  
4 4 - 8 7  

44.38 

44.08 
44.04 
44.08 
44 .20  

44.68 

45 -41 .  

4 4 - 6 1  

44.2 0 

44 .41  

4 5 - 0 2  
45.40 
4 5  . 7 9  
46.19 
46.56 
46 .91  
47 .23  
47.53 
47 .81  
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